High and low reduction potential 4Fe-4S clusters in Azotobacter vinelandii (4Fe-4S) 2ferredoxin I. Influence of the polypeptide on the reduction potentials.
نویسندگان
چکیده
Azotobacter vinelandii (4Fe-4S)2 ferredoxin I (Fd I) is an electron transfer protein with Mr equals 14,500 and Eo equals -420 mv. It exhibits and EPR signal of g equals 2.01 in its isolated form. This resonance is almost identical with the signal that originates from a "super-oxidized" state of the 4Fe-4S cluster of potassium ferricyanide-treated Clostridium ferredoxin. A cluster that exhibits this EPR signal at g equals 2.01 is in the same formal oxidation state as the cluster in oxidized Chromatium High-Potential-Iron-Protein (HiPIP). On photoreduction of Fd I with spinach chloroplast fragments, the resonance at g equals 2.01 vanishes and no EPR signal is observed. This EPR behavior is analogous to that of reduced HiPIP, which also fails to exhibit an EPR spectrum. These characteristics suggest that a cluster in A. vinelandii Fd I functions between the same pair of states on reduction as does the cluster in HiPIP, but with a midpoint reduction potential of -420 mv in contrast to the value of +350 mv characteristic of HiPIP. Quantitative EPR and stoichoimetry studies showed that only one 4Fe-4S cluster in this (4Fe-4S)2 ferredoxin is reduced. Oxidation of Fd I with potassium ferricyanide results in the uptake of 1 electron/mol as determined by quantitative EPR spectroscopy. This indicates that a cluster in Fd I shows no electron paramagnetic resonance in the isolated form of the protein accepts an electron on oxidation, as indicated by the EPR spectrum, and becomes paramagnetic. The EPR behavior of this oxidizable cluster indicates that it also functions between the same pair of oxidation states as does the Fe-S cluster in HiPIP. The midpoint reduction potential of this cluster is approximately +340 mv. A. vinelandii Fd I is the first example of an iron-sulfur protein which contains both a high potential cluster (approximately +340 mv) and a low potential cluster (-420 mv). Both Fe-S clusters appear to function between the same pair of oxidation states as the single Fe-S cluster in Chromatium HiPIP, although the midpoint reduction potentials of the two clusters are approximately 760 mv different.
منابع مشابه
Potentiometric titration of the high- and low-potential 4Fe-4S* centers of Azotobacter vinelandii ferredoxin I.
The high-potential 4Fe-4S* center ofAzotobacter vinelandii ferredoxin I has been titrated potentiometrically by a reductive procedure. The absorbance decrease at 510 nm accompanying the reduction of the high-potential center titrated with an Em of 320 mV (n = 1). The low-potential 4Fe-4S* center was titrated by using the absorbance decrease at 410 nm to monitor its reduction. This center exhibi...
متن کاملInfluence of electrochemical properties in determining the sensitivity of [4Fe-4S] clusters in proteins to oxidative damage.
Interconversion between [4Fe-4S] cubane and [3Fe-4S] cuboidal states represents one of the simplest structural changes an iron-sulphur cluster can undertake. This reaction is implicated in oxidative damage and in modulation of the activity and regulation of certain enzymes, and it is therefore important to understand the factors governing cluster stability and the processes that activate cluste...
متن کاملReconstitution of the [4Fe-4S] cluster in FNR and demonstration of the aerobic-anaerobic transcription switch in vitro.
The FNR protein of Escherichia coli is a redox-responsive transcription regulator that activates and represses a family of genes required for anaerobic and aerobic metabolism. Reconstitution of wild-type FNR by anaerobic treatment with ferrous ions, cysteine and the NifS protein of Azotobacter vinelandii leads to the incorporation of two [4Fe-4S]2+ clusters per FNR dimer. The UV-visible spectru...
متن کاملSite-directed mutagenesis of Azotobacter vinelandii ferredoxin I: [Fe-S] cluster-driven protein rearrangement.
Azotobacter vinelandii ferredoxin I is a small protein that contains one [4Fe-4S] cluster and one [3Fe-4S] cluster. Recently the x-ray crystal structure has been redetermined and the fdxA gene, which encodes the protein, has been cloned and sequenced. Here we report the site-directed mutation of Cys-20, which is a ligand of the [4Fe-4S] cluster in the native protein, to alanine and the characte...
متن کاملCharacterization of [4Fe-4S] cluster vibrations and structure in nitrogenase Fe protein at three oxidation levels via combined NRVS, EXAFS, and DFT analyses.
Azotobacter vinelandii nitrogenase Fe protein (Av2) provides a rare opportunity to investigate a [4Fe-4S] cluster at three oxidation levels in the same protein environment. Here, we report the structural and vibrational changes of this cluster upon reduction using a combination of NRVS and EXAFS spectroscopies and DFT calculations. Key to this work is the synergy between these three techniques...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 250 19 شماره
صفحات -
تاریخ انتشار 1975